15.8.15 problem 15

Internal problem ID [3018]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 12, page 46
Problem number : 15
Date solved : Sunday, March 30, 2025 at 01:09:14 AM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} 2 x y+y^{4}+\left (x y^{3}-2 x^{2}\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.038 (sec). Leaf size: 326
ode:=2*x*y(x)+y(x)^4+(x*y(x)^3-2*x^2)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\frac {\left (-108 x^{4}+8 c_1^{3}+12 \sqrt {81 x^{4}-12 c_1^{3}}\, x^{2}\right )^{{1}/{3}}}{2}+\frac {2 c_1^{2}}{\left (-108 x^{4}+8 c_1^{3}+12 \sqrt {81 x^{4}-12 c_1^{3}}\, x^{2}\right )^{{1}/{3}}}+c_1}{3 x} \\ y &= \frac {\left (-i \sqrt {3}-1\right ) \left (-108 x^{4}+8 c_1^{3}+12 \sqrt {81 x^{4}-12 c_1^{3}}\, x^{2}\right )^{{2}/{3}}+4 c_1 \left (i c_1 \sqrt {3}-c_1 +\left (-108 x^{4}+8 c_1^{3}+12 \sqrt {81 x^{4}-12 c_1^{3}}\, x^{2}\right )^{{1}/{3}}\right )}{12 \left (-108 x^{4}+8 c_1^{3}+12 \sqrt {81 x^{4}-12 c_1^{3}}\, x^{2}\right )^{{1}/{3}} x} \\ y &= \frac {\left (i \sqrt {3}-1\right ) \left (-108 x^{4}+8 c_1^{3}+12 \sqrt {81 x^{4}-12 c_1^{3}}\, x^{2}\right )^{{2}/{3}}+4 \left (-i c_1 \sqrt {3}-c_1 +\left (-108 x^{4}+8 c_1^{3}+12 \sqrt {81 x^{4}-12 c_1^{3}}\, x^{2}\right )^{{1}/{3}}\right ) c_1}{12 \left (-108 x^{4}+8 c_1^{3}+12 \sqrt {81 x^{4}-12 c_1^{3}}\, x^{2}\right )^{{1}/{3}} x} \\ \end{align*}
Mathematica. Time used: 17.179 (sec). Leaf size: 371
ode=(2*x*y[x]+y[x]^4)+(x*y[x]^3-2*x^2)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\frac {2 \sqrt [3]{2} c_1{}^2}{\sqrt [3]{27 x^4+3 \sqrt {81 x^8+12 c_1{}^3 x^4}+2 c_1{}^3}}+2^{2/3} \sqrt [3]{27 x^4+3 \sqrt {81 x^8+12 c_1{}^3 x^4}+2 c_1{}^3}+2 c_1}{6 x} \\ y(x)\to \frac {\frac {2 \sqrt [3]{2} \left (1+i \sqrt {3}\right ) c_1{}^2}{\sqrt [3]{27 x^4+3 \sqrt {81 x^8+12 c_1{}^3 x^4}+2 c_1{}^3}}+2^{2/3} \left (1-i \sqrt {3}\right ) \sqrt [3]{27 x^4+3 \sqrt {81 x^8+12 c_1{}^3 x^4}+2 c_1{}^3}-4 c_1}{12 x} \\ y(x)\to \frac {\frac {2 \sqrt [3]{2} \left (1-i \sqrt {3}\right ) c_1{}^2}{\sqrt [3]{27 x^4+3 \sqrt {81 x^8+12 c_1{}^3 x^4}+2 c_1{}^3}}+2^{2/3} \left (1+i \sqrt {3}\right ) \sqrt [3]{27 x^4+3 \sqrt {81 x^8+12 c_1{}^3 x^4}+2 c_1{}^3}-4 c_1}{12 x} \\ y(x)\to 0 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*y(x) + (-2*x**2 + x*y(x)**3)*Derivative(y(x), x) + y(x)**4,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out