Internal
problem
ID
[2954]
Book
:
Differential
Equations
by
Alfred
L.
Nelson,
Karl
W.
Folley,
Max
Coral.
3rd
ed.
DC
heath.
Boston.
1964
Section
:
Exercise
9,
page
38
Problem
number
:
22
Date
solved
:
Sunday, March 30, 2025 at 01:01:13 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
With initial conditions
ode:=x^2*y(x)^2-y(x)+(2*x^3*y(x)+x)*diff(y(x),x) = 0; ic:=y(2) = -2; dsolve([ode,ic],y(x), singsol=all);
ode=(x^2*y[x]^2-y[x])+(2*x^3*y[x]+x)*D[y[x],x]==0; ic={y[2]==-2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*y(x)**2 + (2*x**3*y(x) + x)*Derivative(y(x), x) - y(x),0) ics = {y(2): -2} dsolve(ode,func=y(x),ics=ics)