15.5.2 problem 2

Internal problem ID [2938]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 9, page 38
Problem number : 2
Date solved : Sunday, March 30, 2025 at 01:00:14 AM
CAS classification : [[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} x y+\left (x^{2}+y\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.220 (sec). Leaf size: 973
ode:=x*y(x)+(y(x)+x^2)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}

Mathematica. Time used: 60.04 (sec). Leaf size: 397
ode=x*y[x]+(x^2+y[x])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -x^2+\frac {1}{\text {Root}\left [\text {$\#$1}^6 \left (x^{12}+e^{12 c_1}\right )-6 \text {$\#$1}^4 x^8+4 \text {$\#$1}^3 x^6+9 \text {$\#$1}^2 x^4-12 \text {$\#$1} x^2+4\&,1\right ]} \\ y(x)\to -x^2+\frac {1}{\text {Root}\left [\text {$\#$1}^6 \left (x^{12}+e^{12 c_1}\right )-6 \text {$\#$1}^4 x^8+4 \text {$\#$1}^3 x^6+9 \text {$\#$1}^2 x^4-12 \text {$\#$1} x^2+4\&,2\right ]} \\ y(x)\to -x^2+\frac {1}{\text {Root}\left [\text {$\#$1}^6 \left (x^{12}+e^{12 c_1}\right )-6 \text {$\#$1}^4 x^8+4 \text {$\#$1}^3 x^6+9 \text {$\#$1}^2 x^4-12 \text {$\#$1} x^2+4\&,3\right ]} \\ y(x)\to -x^2+\frac {1}{\text {Root}\left [\text {$\#$1}^6 \left (x^{12}+e^{12 c_1}\right )-6 \text {$\#$1}^4 x^8+4 \text {$\#$1}^3 x^6+9 \text {$\#$1}^2 x^4-12 \text {$\#$1} x^2+4\&,4\right ]} \\ y(x)\to -x^2+\frac {1}{\text {Root}\left [\text {$\#$1}^6 \left (x^{12}+e^{12 c_1}\right )-6 \text {$\#$1}^4 x^8+4 \text {$\#$1}^3 x^6+9 \text {$\#$1}^2 x^4-12 \text {$\#$1} x^2+4\&,5\right ]} \\ y(x)\to -x^2+\frac {1}{\text {Root}\left [\text {$\#$1}^6 \left (x^{12}+e^{12 c_1}\right )-6 \text {$\#$1}^4 x^8+4 \text {$\#$1}^3 x^6+9 \text {$\#$1}^2 x^4-12 \text {$\#$1} x^2+4\&,6\right ]} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x) + (x**2 + y(x))*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out