Internal
problem
ID
[2767]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Section
3.12,
Systems
of
differential
equations.
The
nonhomogeneous
equation.
variation
of
parameters.
Page
366
Problem
number
:
11
Date
solved
:
Sunday, March 30, 2025 at 12:16:53 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = x__1(t)-x__2(t)-t^2, diff(x__2(t),t) = x__1(t)+3*x__2(t)+2*t]; dsolve(ode);
ode={D[ x1[t],t]==1*x1[t]+3*x2[t]-t^2,D[ x2[t],t]==1*x1[t]+3*x2[t]+2*t}; ic={}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(t**2 - x__1(t) + x__2(t) + Derivative(x__1(t), t),0),Eq(-2*t - x__1(t) - 3*x__2(t) + Derivative(x__2(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)