Internal
problem
ID
[2747]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Section
3.9,
Systems
of
differential
equations.
Complex
roots.
Page
344
Problem
number
:
8
Date
solved
:
Sunday, March 30, 2025 at 12:16:19 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = 2*x__2(t), diff(x__2(t),t) = -2*x__1(t), diff(x__3(t),t) = -3*x__4(t), diff(x__4(t),t) = 3*x__3(t)]; ic:=x__1(0) = 1x__2(0) = 1x__3(0) = 1x__4(0) = 0; dsolve([ode,ic]);
ode={D[ x1[t],t]==-0*x1[t]+2*x2[t]+0*x3[t]+0*x4[t],D[ x2[t],t]==-2*x1[t]-0*x2[t]-0*x3[t]+0*x4[t],D[ x3[t],t]==0*x1[t]-0*x2[t]-0*x3[t]-3*x4[t],D[ x4[t],t]==0*x1[t]-0*x2[t]+3*x3[t]-0*x4[t]}; ic={x1[0]==1,x2[0]==1,x3[0]==1,x4[0]==0}; DSolve[{ode,ic},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") x__4 = Function("x__4") ode=[Eq(-2*x__2(t) + Derivative(x__1(t), t),0),Eq(2*x__1(t) + Derivative(x__2(t), t),0),Eq(3*x__4(t) + Derivative(x__3(t), t),0),Eq(-3*x__3(t) + Derivative(x__4(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t),x__4(t)],ics=ics)