14.4.1 problem 1

Internal problem ID [2519]
Book : Differential equations and their applications, 4th ed., M. Braun
Section : Chapter 1. First order differential equations. Section 1.10. Existence-uniqueness theorem. Excercises page 80
Problem number : 1
Date solved : Sunday, March 30, 2025 at 12:07:56 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=2 t \left (y+1\right ) \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Maple. Time used: 0.020 (sec). Leaf size: 10
ode:=diff(y(t),t) = 2*t*(1+y(t)); 
ic:=y(0) = 0; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ y = -1+{\mathrm e}^{t^{2}} \]
Mathematica. Time used: 0.031 (sec). Leaf size: 12
ode=D[y[t],t]==2*t*(y[t]+1); 
ic={y[0]==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to e^{t^2}-1 \]
Sympy. Time used: 0.261 (sec). Leaf size: 8
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-2*t*(y(t) + 1) + Derivative(y(t), t),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = e^{t^{2}} - 1 \]