10.13.20 problem 26

Internal problem ID [1380]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number : 26
Date solved : Saturday, March 29, 2025 at 10:53:46 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (-x^{2}+4\right ) y^{\prime \prime }+x y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=1 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 14
Order:=6; 
ode:=(-x^2+4)*diff(diff(y(x),x),x)+x*diff(y(x),x)+2*y(x) = 0; 
ic:=y(0) = 0, D(y)(0) = 1; 
dsolve([ode,ic],y(x),type='series',x=0);
 
\[ y = x -\frac {1}{8} x^{3}-\frac {1}{640} x^{5}+\operatorname {O}\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 19
ode=(4-x^2)*D[y[x],{x,2}]+x*D[y[x],x]+2*y[x]==0; 
ic={y[0]==0,Derivative[1][y][0] ==1}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to -\frac {x^5}{640}-\frac {x^3}{8}+x \]
Sympy. Time used: 0.859 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) + (4 - x**2)*Derivative(y(x), (x, 2)) + 2*y(x),0) 
ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 1} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {x^{4}}{96} - \frac {x^{2}}{4} + 1\right ) + C_{1} x \left (1 - \frac {x^{2}}{8}\right ) + O\left (x^{6}\right ) \]