83.26.12 problem 12

Internal problem ID [19265]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter VI. Homogeneous linear equations with variable coefficients. Exercise VI (C) at page 93
Problem number : 12
Date solved : Monday, March 31, 2025 at 07:03:47 PM
CAS classification : [[_high_order, _with_linear_symmetries]]

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y&=4 x \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 26
ode:=x^4*diff(diff(diff(diff(y(x),x),x),x),x)+6*x^3*diff(diff(diff(y(x),x),x),x)+9*x^2*diff(diff(y(x),x),x)+3*x*diff(y(x),x)+y(x) = 4*x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_3 \ln \left (x \right )+c_1 \right ) \cos \left (\ln \left (x \right )\right )+\left (c_4 \ln \left (x \right )+c_2 \right ) \sin \left (\ln \left (x \right )\right )+x \]
Mathematica. Time used: 0.072 (sec). Leaf size: 31
ode=x^4*D[y[x],{x,4}]+6*x^3*D[y[x],{x,3}]+9*x^2*D[y[x],{x,2}]+3*x*D[y[x],x]+y[x]==4*x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x+(c_2 \log (x)+c_1) \cos (\log (x))+(c_4 \log (x)+c_3) \sin (\log (x)) \]
Sympy. Time used: 0.365 (sec). Leaf size: 37
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**4*Derivative(y(x), (x, 4)) + 6*x**3*Derivative(y(x), (x, 3)) + 9*x**2*Derivative(y(x), (x, 2)) + 3*x*Derivative(y(x), x) - 4*x + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \log {\left (x \right )} \sin {\left (\log {\left (x \right )} \right )} + C_{2} \log {\left (x \right )} \cos {\left (\log {\left (x \right )} \right )} + C_{3} \sin {\left (\log {\left (x \right )} \right )} + C_{4} \cos {\left (\log {\left (x \right )} \right )} + x \]