83.23.13 problem 13

Internal problem ID [19223]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter V. Singular solutions. Exercise V at page 76
Problem number : 13
Date solved : Monday, March 31, 2025 at 06:57:47 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} y {y^{\prime }}^{2}-2 x y^{\prime }+y&=0 \end{align*}

Maple. Time used: 0.341 (sec). Leaf size: 67
ode:=y(x)*diff(y(x),x)^2-2*x*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -x \\ y &= x \\ y &= 0 \\ y &= \sqrt {c_1 \left (-2 i x +c_1 \right )} \\ y &= \sqrt {c_1 \left (2 i x +c_1 \right )} \\ y &= -\sqrt {c_1 \left (-2 i x +c_1 \right )} \\ y &= -\sqrt {c_1 \left (2 i x +c_1 \right )} \\ \end{align*}
Mathematica. Time used: 5.413 (sec). Leaf size: 64
ode=y[x]*D[y[x],x]^2-2*x*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {-e^{c_1} \left (-2 x+e^{c_1}\right )} \\ y(x)\to \sqrt {-e^{c_1} \left (-2 x+e^{c_1}\right )} \\ y(x)\to 0 \\ y(x)\to -x \\ y(x)\to x \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*Derivative(y(x), x) + y(x)*Derivative(y(x), x)**2 + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out