83.22.12 problem 12

Internal problem ID [19195]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter IV. Equations of the first order but not of the first degree. Exercise IV (E) at page 63
Problem number : 12
Date solved : Monday, March 31, 2025 at 06:53:36 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} a^{2} y {y^{\prime }}^{2}-4 x y^{\prime }+y&=0 \end{align*}

Maple. Time used: 0.192 (sec). Leaf size: 114
ode:=a^2*y(x)*diff(y(x),x)^2-4*x*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= \operatorname {RootOf}\left (-\ln \left (x \right )-\int _{}^{\textit {\_Z}}\frac {a^{2} \textit {\_a}^{2}+\sqrt {-a^{2} \textit {\_a}^{2}+4}-2}{\textit {\_a} \left (a^{2} \textit {\_a}^{2}-3\right )}d \textit {\_a} +c_1 \right ) x \\ y &= \operatorname {RootOf}\left (-\ln \left (x \right )+\int _{}^{\textit {\_Z}}-\frac {a^{2} \textit {\_a}^{2}-\sqrt {-a^{2} \textit {\_a}^{2}+4}-2}{\textit {\_a} \left (a^{2} \textit {\_a}^{2}-3\right )}d \textit {\_a} +c_1 \right ) x \\ \end{align*}
Mathematica. Time used: 60.886 (sec). Leaf size: 1287
ode=a^2*y[x]*D[y[x],x]^2-4*x*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy. Time used: 16.252 (sec). Leaf size: 117
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a**2*y(x)*Derivative(y(x), x)**2 - 4*x*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \begin {cases} - \sqrt {3} \sqrt {\frac {x^{2}}{a^{2}}} & \text {for}\: a^{2} \neq 0 \\\text {NaN} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} \sqrt {3} \sqrt {\frac {x^{2}}{a^{2}}} & \text {for}\: a^{2} \neq 0 \\\text {NaN} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} - x \sqrt {\frac {C_{1}}{x^{2}}} & \text {for}\: a^{2} = 0 \\\text {NaN} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} x \sqrt {\frac {C_{1}}{x^{2}}} & \text {for}\: a^{2} = 0 \\\text {NaN} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} - \frac {2 x \sqrt {C_{1} + \log {\left (x^{2} \right )}}}{a} & \text {for}\: a^{2} = 0 \\\text {NaN} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} \frac {2 x \sqrt {C_{1} + \log {\left (x^{2} \right )}}}{a} & \text {for}\: a^{2} = 0 \\\text {NaN} & \text {otherwise} \end {cases}\right ] \]