83.20.4 problem 4

Internal problem ID [19171]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter IV. Equations of the first order but not of the first degree. Exercise IV (C) at page 56
Problem number : 4
Date solved : Monday, March 31, 2025 at 06:51:06 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} {y^{\prime }}^{2} y+2 y^{\prime } x&=y \end{align*}

Maple. Time used: 0.118 (sec). Leaf size: 69
ode:=y(x)*diff(y(x),x)^2+2*x*diff(y(x),x) = y(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -i x \\ y &= i x \\ y &= 0 \\ y &= \sqrt {c_1 \left (c_1 -2 x \right )} \\ y &= \sqrt {c_1 \left (c_1 +2 x \right )} \\ y &= -\sqrt {c_1 \left (c_1 -2 x \right )} \\ y &= -\sqrt {c_1 \left (c_1 +2 x \right )} \\ \end{align*}
Mathematica. Time used: 0.431 (sec). Leaf size: 126
ode=D[y[x],x]^2*y[x]+2*D[y[x],x]*x==y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -e^{\frac {c_1}{2}} \sqrt {-2 x+e^{c_1}} \\ y(x)\to e^{\frac {c_1}{2}} \sqrt {-2 x+e^{c_1}} \\ y(x)\to -e^{\frac {c_1}{2}} \sqrt {2 x+e^{c_1}} \\ y(x)\to e^{\frac {c_1}{2}} \sqrt {2 x+e^{c_1}} \\ y(x)\to 0 \\ y(x)\to -i x \\ y(x)\to i x \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*Derivative(y(x), x) + y(x)*Derivative(y(x), x)**2 - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out