83.8.26 problem 27

Internal problem ID [19081]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter II. Equations of first order and first degree. Misc examples on chapter II at page 25
Problem number : 27
Date solved : Monday, March 31, 2025 at 06:47:41 PM
CAS classification : [_exact, _rational]

\begin{align*} x^{2}-a y&=\left (a x -y^{2}\right ) y^{\prime } \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 280
ode:=x^2-a*y(x) = (a*x-y(x)^2)*diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {4 a x +\left (-4 x^{3}-12 c_1 +4 \sqrt {x^{6}+\left (-4 a^{3}+6 c_1 \right ) x^{3}+9 c_1^{2}}\right )^{{2}/{3}}}{2 \left (-4 x^{3}-12 c_1 +4 \sqrt {x^{6}+\left (-4 a^{3}+6 c_1 \right ) x^{3}+9 c_1^{2}}\right )^{{1}/{3}}} \\ y &= \frac {\left (-i \sqrt {3}-1\right ) \left (-4 x^{3}-12 c_1 +4 \sqrt {x^{6}+\left (-4 a^{3}+6 c_1 \right ) x^{3}+9 c_1^{2}}\right )^{{1}/{3}}}{4}+\frac {\left (i \sqrt {3}-1\right ) x a}{\left (-4 x^{3}-12 c_1 +4 \sqrt {x^{6}+\left (-4 a^{3}+6 c_1 \right ) x^{3}+9 c_1^{2}}\right )^{{1}/{3}}} \\ y &= \frac {\left (i \sqrt {3}-1\right ) \left (-4 x^{3}-12 c_1 +4 \sqrt {x^{6}+\left (-4 a^{3}+6 c_1 \right ) x^{3}+9 c_1^{2}}\right )^{{1}/{3}}}{4}-\frac {\left (1+i \sqrt {3}\right ) x a}{\left (-4 x^{3}-12 c_1 +4 \sqrt {x^{6}+\left (-4 a^{3}+6 c_1 \right ) x^{3}+9 c_1^{2}}\right )^{{1}/{3}}} \\ \end{align*}
Mathematica. Time used: 5.52 (sec). Leaf size: 325
ode=(x^2-a*y[x])==(a*x-y[x]^2)*D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {2 a x+\sqrt [3]{2} \left (\sqrt {-4 a^3 x^3+\left (x^3+3 c_1\right ){}^2}+x^3+3 c_1\right ){}^{2/3}}{2^{2/3} \sqrt [3]{\sqrt {-4 a^3 x^3+\left (x^3+3 c_1\right ){}^2}+x^3+3 c_1}} \\ y(x)\to \frac {2^{2/3} \left (1-i \sqrt {3}\right ) \left (\sqrt {-4 a^3 x^3+\left (x^3+3 c_1\right ){}^2}+x^3+3 c_1\right ){}^{2/3}+2 \sqrt [3]{2} \left (1+i \sqrt {3}\right ) a x}{4 \sqrt [3]{\sqrt {-4 a^3 x^3+\left (x^3+3 c_1\right ){}^2}+x^3+3 c_1}} \\ y(x)\to \frac {2^{2/3} \left (1+i \sqrt {3}\right ) \left (\sqrt {-4 a^3 x^3+\left (x^3+3 c_1\right ){}^2}+x^3+3 c_1\right ){}^{2/3}+2 \sqrt [3]{2} \left (1-i \sqrt {3}\right ) a x}{4 \sqrt [3]{\sqrt {-4 a^3 x^3+\left (x^3+3 c_1\right ){}^2}+x^3+3 c_1}} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a*y(x) + x**2 - (a*x - y(x)**2)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out