83.8.13 problem 14

Internal problem ID [19068]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter II. Equations of first order and first degree. Misc examples on chapter II at page 25
Problem number : 14
Date solved : Monday, March 31, 2025 at 06:43:17 PM
CAS classification : [`y=_G(x,y')`]

\begin{align*} y \left (2 x^{2} y+{\mathrm e}^{x}\right )-\left ({\mathrm e}^{x}+y^{3}\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.007 (sec). Leaf size: 314
ode:=y(x)*(2*x^2*y(x)+exp(x))-(exp(x)+y(x)^3)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {4 x^{3}+\left (27 \,{\mathrm e}^{x}+\sqrt {-64 x^{9}-288 c_1 \,x^{6}-432 x^{3} c_1^{2}-216 c_1^{3}+729 \,{\mathrm e}^{2 x}}\right )^{{2}/{3}}+6 c_1}{3 \left (27 \,{\mathrm e}^{x}+\sqrt {-64 x^{9}-288 c_1 \,x^{6}-432 x^{3} c_1^{2}-216 c_1^{3}+729 \,{\mathrm e}^{2 x}}\right )^{{1}/{3}}} \\ y &= \frac {\left (-i \sqrt {3}-1\right ) \left (27 \,{\mathrm e}^{x}+\sqrt {-64 x^{9}-288 c_1 \,x^{6}-432 x^{3} c_1^{2}-216 c_1^{3}+729 \,{\mathrm e}^{2 x}}\right )^{{1}/{3}}}{6}+\frac {2 \left (x^{3}+\frac {3 c_1}{2}\right ) \left (i \sqrt {3}-1\right )}{3 \left (27 \,{\mathrm e}^{x}+\sqrt {-64 x^{9}-288 c_1 \,x^{6}-432 x^{3} c_1^{2}-216 c_1^{3}+729 \,{\mathrm e}^{2 x}}\right )^{{1}/{3}}} \\ y &= \frac {\frac {\left (i \sqrt {3}-1\right ) \left (27 \,{\mathrm e}^{x}+\sqrt {-64 x^{9}-288 c_1 \,x^{6}-432 x^{3} c_1^{2}-216 c_1^{3}+729 \,{\mathrm e}^{2 x}}\right )^{{2}/{3}}}{6}+\frac {2 \left (-i \sqrt {3}-1\right ) \left (x^{3}+\frac {3 c_1}{2}\right )}{3}}{\left (27 \,{\mathrm e}^{x}+\sqrt {-64 x^{9}-288 c_1 \,x^{6}-432 x^{3} c_1^{2}-216 c_1^{3}+729 \,{\mathrm e}^{2 x}}\right )^{{1}/{3}}} \\ \end{align*}
Mathematica. Time used: 21.616 (sec). Leaf size: 336
ode=y[x]*(2*x^2*y[x]+Exp[x])-(Exp[x]+y[x]^3)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {4 x^3+\left (27 e^x+\sqrt {729 e^{2 x}-8 \left (2 x^3+3 c_1\right ){}^3}\right ){}^{2/3}+6 c_1}{3 \sqrt [3]{27 e^x+\sqrt {729 e^{2 x}-8 \left (2 x^3+3 c_1\right ){}^3}}} \\ y(x)\to -\frac {i \left (-4 \left (\sqrt {3}+i\right ) x^3+\left (\sqrt {3}-i\right ) \left (27 e^x+\sqrt {729 e^{2 x}-8 \left (2 x^3+3 c_1\right ){}^3}\right ){}^{2/3}-6 \left (\sqrt {3}+i\right ) c_1\right )}{6 \sqrt [3]{27 e^x+\sqrt {729 e^{2 x}-8 \left (2 x^3+3 c_1\right ){}^3}}} \\ y(x)\to \frac {i \left (-4 \left (\sqrt {3}-i\right ) x^3+\left (\sqrt {3}+i\right ) \left (27 e^x+\sqrt {729 e^{2 x}-8 \left (2 x^3+3 c_1\right ){}^3}\right ){}^{2/3}-6 \left (\sqrt {3}-i\right ) c_1\right )}{6 \sqrt [3]{27 e^x+\sqrt {729 e^{2 x}-8 \left (2 x^3+3 c_1\right ){}^3}}} \\ y(x)\to 0 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((2*x**2*y(x) + exp(x))*y(x) - (y(x)**3 + exp(x))*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -(2*x**2*y(x) + exp(x))*y(x)/(y(x)**3 + exp(x)) + Derivative(y(x), x) cannot be solved by the factorable group method