Internal
problem
ID
[18969]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
XI.
Ordinary
differential
equations
with
more
than
two
variables.
problems
at
page
129
Problem
number
:
Ex.
5
Date
solved
:
Monday, March 31, 2025 at 06:26:54 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(diff(x(t),t),t)-3*x(t)-4*y(t) = 0, diff(diff(y(t),t),t)+x(t)+y(t) = 0]; dsolve(ode);
ode={D[x[t],{t,2}]-3*x[t]-4*y[t]==0,D[y[t],{t,2}]+x[t]+y[t]==0}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-3*x(t) - 4*y(t) + Derivative(x(t), (t, 2)),0),Eq(x(t) + y(t) + Derivative(y(t), (t, 2)),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)