82.8.4 problem Ex. 4

Internal problem ID [18681]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter II. Equations of the first order and of the first degree. Exercises at page 25
Problem number : Ex. 4
Date solved : Monday, March 31, 2025 at 05:56:29 PM
CAS classification : [_rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]

\begin{align*} y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.009 (sec). Leaf size: 27
ode:=y(x)^4+2*y(x)+(x*y(x)^3+2*y(x)^4-4*x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ x -\frac {\left (-y^{2}+c_1 \right ) y^{2}}{y^{3}+2} = 0 \]
Mathematica. Time used: 60.238 (sec). Leaf size: 2021
ode=(y[x]^4+2*y[x])+(x*y[x]^3+2*y[x]^4-4*x)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy. Time used: 105.615 (sec). Leaf size: 4383
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x*y(x)**3 - 4*x + 2*y(x)**4)*Derivative(y(x), x) + y(x)**4 + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \text {Solution too large to show} \]