78.3.3 problem 1 (c)

Internal problem ID [18035]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 2. First order equations. Section 7 (Homogeneous Equations). Problems at page 67
Problem number : 1 (c)
Date solved : Monday, March 31, 2025 at 04:58:39 PM
CAS classification : [[_homogeneous, `class A`], _dAlembert]

\begin{align*} x^{2} y^{\prime }&=3 \left (x^{2}+y^{2}\right ) \arctan \left (\frac {y}{x}\right )+x y \end{align*}

Maple. Time used: 0.010 (sec). Leaf size: 12
ode:=x^2*diff(y(x),x) = 3*(x^2+y(x)^2)*arctan(y(x)/x)+x*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \tan \left (c_1 \,x^{3}\right ) x \]
Mathematica. Time used: 1.25 (sec). Leaf size: 16
ode=x^2*D[y[x],x]==3*(x^2+y[x]^2)*ArcTan[y[x]/x]+x*y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x \tan \left (e^{c_1} x^3\right ) \]
Sympy. Time used: 1.034 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x) - x*y(x) - (3*x**2 + 3*y(x)**2)*atan(y(x)/x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x \tan {\left (C_{1} x^{3} \right )} \]