Internal
problem
ID
[18035]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
2.
First
order
equations.
Section
7
(Homogeneous
Equations).
Problems
at
page
67
Problem
number
:
1
(c)
Date
solved
:
Monday, March 31, 2025 at 04:58:39 PM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
ode:=x^2*diff(y(x),x) = 3*(x^2+y(x)^2)*arctan(y(x)/x)+x*y(x); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],x]==3*(x^2+y[x]^2)*ArcTan[y[x]/x]+x*y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x) - x*y(x) - (3*x**2 + 3*y(x)**2)*atan(y(x)/x),0) ics = {} dsolve(ode,func=y(x),ics=ics)