73.27.17 problem 38.10 (k)

Internal problem ID [15702]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 38. Systems of differential equations. A starting point. Additional Exercises. page 786
Problem number : 38.10 (k)
Date solved : Monday, March 31, 2025 at 01:45:29 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=4 x \left (t \right )-13 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=x \left (t \right )+19 \cos \left (4 t \right )-13 \sin \left (4 t \right ) \end{align*}

With initial conditions

\begin{align*} x \left (0\right ) = 13\\ y \left (0\right ) = 0 \end{align*}

Maple. Time used: 0.589 (sec). Leaf size: 26
ode:=[diff(x(t),t) = 4*x(t)-13*y(t), diff(y(t),t) = x(t)+19*cos(4*t)-13*sin(4*t)]; 
ic:=x(0) = 13y(0) = 0; 
dsolve([ode,ic]);
 
\begin{align*} x \left (t \right ) &= 13 \cos \left (4 t \right )+13 \sin \left (4 t \right ) \\ y \left (t \right ) &= 8 \sin \left (4 t \right ) \\ \end{align*}
Mathematica. Time used: 0.319 (sec). Leaf size: 554
ode={D[x[t],t]==4*x[t]-13*y[t],D[y[t],t]==x[t]+19*Cos[4*t]-13*Sin[4*t]}; 
ic={x[0]==13,y[0]==0}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {1}{3} e^{2 t} \left (-\left ((2 \sin (3 t)+3 \cos (3 t)) \int _1^0\frac {13}{3} e^{-2 K[1]} \sin (3 K[1]) (19 \cos (4 K[1])-13 \sin (4 K[1]))dK[1]\right )+(2 \sin (3 t)+3 \cos (3 t)) \int _1^t\frac {13}{3} e^{-2 K[1]} \sin (3 K[1]) (19 \cos (4 K[1])-13 \sin (4 K[1]))dK[1]+13 \left (\sin (3 t) \int _1^0\frac {1}{3} e^{-2 K[2]} (3 \cos (3 K[2])+2 \sin (3 K[2])) (19 \cos (4 K[2])-13 \sin (4 K[2]))dK[2]-\sin (3 t) \int _1^t\frac {1}{3} e^{-2 K[2]} (3 \cos (3 K[2])+2 \sin (3 K[2])) (19 \cos (4 K[2])-13 \sin (4 K[2]))dK[2]+2 \sin (3 t)+3 \cos (3 t)\right )\right ) \\ y(t)\to \frac {1}{3} e^{2 t} \left (\sin (3 t) \left (-\int _1^0\frac {13}{3} e^{-2 K[1]} \sin (3 K[1]) (19 \cos (4 K[1])-13 \sin (4 K[1]))dK[1]\right )+\sin (3 t) \int _1^t\frac {13}{3} e^{-2 K[1]} \sin (3 K[1]) (19 \cos (4 K[1])-13 \sin (4 K[1]))dK[1]+2 \sin (3 t) \int _1^0\frac {1}{3} e^{-2 K[2]} (3 \cos (3 K[2])+2 \sin (3 K[2])) (19 \cos (4 K[2])-13 \sin (4 K[2]))dK[2]-2 \sin (3 t) \int _1^t\frac {1}{3} e^{-2 K[2]} (3 \cos (3 K[2])+2 \sin (3 K[2])) (19 \cos (4 K[2])-13 \sin (4 K[2]))dK[2]-3 \cos (3 t) \int _1^0\frac {1}{3} e^{-2 K[2]} (3 \cos (3 K[2])+2 \sin (3 K[2])) (19 \cos (4 K[2])-13 \sin (4 K[2]))dK[2]+3 \cos (3 t) \int _1^t\frac {1}{3} e^{-2 K[2]} (3 \cos (3 K[2])+2 \sin (3 K[2])) (19 \cos (4 K[2])-13 \sin (4 K[2]))dK[2]+13 \sin (3 t)\right ) \\ \end{align*}
Sympy. Time used: 0.927 (sec). Leaf size: 143
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-4*x(t) + 13*y(t) + Derivative(x(t), t),0),Eq(-x(t) + 13*sin(4*t) - 19*cos(4*t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = \left (2 C_{1} - 3 C_{2}\right ) e^{2 t} \cos {\left (3 t \right )} - \left (3 C_{1} + 2 C_{2}\right ) e^{2 t} \sin {\left (3 t \right )} + 13 \sin ^{2}{\left (3 t \right )} \sin {\left (4 t \right )} + 13 \sin ^{2}{\left (3 t \right )} \cos {\left (4 t \right )} + 13 \sin {\left (4 t \right )} \cos ^{2}{\left (3 t \right )} + 13 \cos ^{2}{\left (3 t \right )} \cos {\left (4 t \right )}, \ y{\left (t \right )} = C_{1} e^{2 t} \cos {\left (3 t \right )} - C_{2} e^{2 t} \sin {\left (3 t \right )} + 8 \sin ^{2}{\left (3 t \right )} \sin {\left (4 t \right )} + 8 \sin {\left (4 t \right )} \cos ^{2}{\left (3 t \right )}\right ] \]