Internal
problem
ID
[15601]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
33.
Power
series
solutions
I:
Basic
computational
methods.
Additional
Exercises.
page
641
Problem
number
:
33.10
Date
solved
:
Monday, March 31, 2025 at 01:42:07 PM
CAS
classification
:
[_Gegenbauer]
Using series method with expansion around
Order:=6; ode:=(-x^2+1)*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+lambda*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(1-x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+\[Lambda]*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(lambda_*y(x) - 2*x*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)