Internal
problem
ID
[14448]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
4.
N-th
Order
Linear
Differential
Equations.
Exercises
4.5,
page
221
Problem
number
:
3
Date
solved
:
Monday, March 31, 2025 at 12:27:25 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(diff(y(x),x),x),x)-diff(diff(y(x),x),x)+diff(y(x),x)-y(x) = 2*exp(x); ic:=y(0) = 1, D(y)(0) = 3, (D@@2)(y)(0) = -3; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,3}]-D[y[x],{x,2}]+D[y[x],x]-y[x]==2*Exp[x]; ic={y[0]==1,Derivative[1][y][0] ==3,Derivative[2][y][0] ==-3}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-y(x) - 2*exp(x) + Derivative(y(x), x) - Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 3, Subs(Derivative(y(x), (x, 2)), x, 0): -3} dsolve(ode,func=y(x),ics=ics)