67.4.32 problem Problem 5(c)
Internal
problem
ID
[14005]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.6
Laplace
transform.
Nonhomogeneous
equations.
Problems
page
368
Problem
number
:
Problem
5(c)
Date
solved
:
Monday, March 31, 2025 at 08:21:37 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
\begin{align*} y^{\prime \prime }+4 y^{\prime }+29 y&=5 \delta \left (t -\pi \right )-5 \delta \left (t -2 \pi \right ) \end{align*}
Using Laplace method With initial conditions
\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=0 \end{align*}
✓ Maple. Time used: 0.293 (sec). Leaf size: 36
ode:=diff(diff(y(t),t),t)+4*diff(y(t),t)+29*y(t) = 5*Dirac(t-Pi)-5*Dirac(t-2*Pi);
ic:=y(0) = 0, D(y)(0) = 0;
dsolve([ode,ic],y(t),method='laplace');
\[
y = -\left (\operatorname {Heaviside}\left (t -2 \pi \right ) {\mathrm e}^{2 \pi }+\operatorname {Heaviside}\left (t -\pi \right )\right ) \sin \left (5 t \right ) {\mathrm e}^{2 \pi -2 t}
\]
✓ Mathematica. Time used: 0.121 (sec). Leaf size: 93
ode=D[y[t],{t,2}]+4*D[y[t],t]+29*y[t]==5*DiracDelta[t-Pi]-5*DiracDelta[t-2*Pi];
ic={y[0]==0,Derivative[1][y][0] ==0};
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
\[
y(t)\to -e^{-2 t} \sin (5 t) \left (\int _1^0-e^{2 K[1]} \cos (5 K[1]) (\delta (K[1]-2 \pi )-\delta (K[1]-\pi ))dK[1]-\int _1^t-e^{2 K[1]} \cos (5 K[1]) (\delta (K[1]-2 \pi )-\delta (K[1]-\pi ))dK[1]\right )
\]
✓ Sympy. Time used: 8.117 (sec). Leaf size: 160
from sympy import *
t = symbols("t")
y = Function("y")
ode = Eq(5*Dirac(t - 2*pi) - 5*Dirac(t - pi) + 29*y(t) + 4*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0)
ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0}
dsolve(ode,func=y(t),ics=ics)
\[
y{\left (t \right )} = \left (\left (\int \operatorname {Dirac}{\left (t - 2 \pi \right )} e^{2 t} \sin {\left (5 t \right )}\, dt - \int \limits ^{0} \operatorname {Dirac}{\left (t - 2 \pi \right )} e^{2 t} \sin {\left (5 t \right )}\, dt - \int \operatorname {Dirac}{\left (t - \pi \right )} e^{2 t} \sin {\left (5 t \right )}\, dt + \int \limits ^{0} \operatorname {Dirac}{\left (t - \pi \right )} e^{2 t} \sin {\left (5 t \right )}\, dt\right ) \cos {\left (5 t \right )} + \left (- \int \operatorname {Dirac}{\left (t - 2 \pi \right )} e^{2 t} \cos {\left (5 t \right )}\, dt + \int \limits ^{0} \operatorname {Dirac}{\left (t - 2 \pi \right )} e^{2 t} \cos {\left (5 t \right )}\, dt + \int \operatorname {Dirac}{\left (t - \pi \right )} e^{2 t} \cos {\left (5 t \right )}\, dt - \int \limits ^{0} \operatorname {Dirac}{\left (t - \pi \right )} e^{2 t} \cos {\left (5 t \right )}\, dt\right ) \sin {\left (5 t \right )}\right ) e^{- 2 t}
\]