Internal
problem
ID
[11770]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
7,
non-linear
third
and
higher
order
Problem
number
:
1845
Date
solved
:
Sunday, March 30, 2025 at 09:14:40 PM
CAS
classification
:
[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]
ode:=9*y(x)^2*diff(diff(diff(y(x),x),x),x)-45*y(x)*diff(y(x),x)*diff(diff(y(x),x),x)+40*diff(y(x),x)^3 = 0; dsolve(ode,y(x), singsol=all);
ode=40*D[y[x],x]^3 - 45*y[x]*D[y[x],x]*D[y[x],{x,2}] + 9*y[x]^2*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(9*y(x)**2*Derivative(y(x), (x, 3)) - 45*y(x)*Derivative(y(x), x)*Derivative(y(x), (x, 2)) + 40*Derivative(y(x), x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE (sqrt(59049*y(x)**4*Derivative(y(x), (x, 3))**2/1600 - 19683*y(x)**3*Derivative(y(x), (x, 2))**3/128)/2 + 243*y(x)**2*Derivative(y(x), (x, 3))/80)**(1/3)/3 + Derivative(y(x), x) + 9*y(x)*Derivative(y(x), (x, 2))/(8*(sqrt(59049*y(x)**4*Derivative(y(x), (x, 3))**2/1600 - 19683*y(x)**3*Derivative(y(x), (x, 2))**3/128)/2 + 243*y(x)**2*Derivative(y(x), (x, 3))/80)**(1/3)) cannot be solved by the factorable group method