Internal
problem
ID
[11536]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
4,
linear
fourth
order
Problem
number
:
1576
Date
solved
:
Sunday, March 30, 2025 at 08:24:24 PM
CAS
classification
:
[[_high_order, _missing_x]]
ode:=f*(diff(diff(diff(diff(y(x),x),x),x),x)-2*a^2*diff(diff(y(x),x),x)+a^4*y(x))+2*df*(diff(diff(diff(y(x),x),x),x)-a^2*diff(y(x),x)) = 0; dsolve(ode,y(x), singsol=all);
ode=f*(D[y[x],{x,4}]-2*a^2*D[y[x],{x,2}]+a^4*y[x])+2*df*(D[y[x],{x,3}]-a^2*D[y[x],x])==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") df = symbols("df") f = symbols("f") y = Function("y") ode = Eq(2*df*(-a**2*Derivative(y(x), x) + Derivative(y(x), (x, 3))) + f*(a**4*y(x) - 2*a**2*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4))),0) ics = {} dsolve(ode,func=y(x),ics=ics)