Internal
problem
ID
[11519]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
4,
linear
fourth
order
Problem
number
:
1559
Date
solved
:
Sunday, March 30, 2025 at 08:24:05 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=x^3*diff(diff(diff(diff(y(x),x),x),x),x)+2*x^2*diff(diff(diff(y(x),x),x),x)-x*diff(diff(y(x),x),x)+diff(y(x),x)-a^4*x^3*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-(a^4*x^3*y[x]) + D[y[x],x] - x*D[y[x],{x,2}] + 2*x^2*Derivative[3][y][x] + x^3*Derivative[4][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-a**4*x**3*y(x) + x**3*Derivative(y(x), (x, 4)) + 2*x**2*Derivative(y(x), (x, 3)) - x*Derivative(y(x), (x, 2)) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x*(a**4*x**2*y(x) - x**2*Derivative(y(x), (x, 4)) - 2*x*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 2))) + Derivative(y(x), x) cannot be solved by the factorable group method