Internal
problem
ID
[11518]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
4,
linear
fourth
order
Problem
number
:
1558
Date
solved
:
Sunday, March 30, 2025 at 08:24:04 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(diff(diff(y(x),x),x),x),x)+(2*n-2*nu+4)*x*diff(diff(diff(y(x),x),x),x)+(n-nu+1)*(n-nu+2)*diff(diff(y(x),x),x)-1/16*b^4*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-1/16*(b^4*y[x]) + (1 + n - nu)*(2 + n - nu)*D[y[x],{x,2}] + (4 + 2*n - 2*nu)*x*Derivative[3][y][x] + x^2*Derivative[4][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") b = symbols("b") n = symbols("n") nu = symbols("nu") y = Function("y") ode = Eq(-b**4*y(x)/16 + x**2*Derivative(y(x), (x, 4)) + x*(2*n - 2*nu + 4)*Derivative(y(x), (x, 3)) + (n - nu + 1)*(n - nu + 2)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : solve: Cannot solve -b**4*y(x)/16 + x**2*Derivative(y(x), (x, 4)) + x*(2*n - 2*nu + 4)*Derivative(y(x), (x, 3)) + (n - nu + 1)*(n - nu + 2)*Derivative(y(x), (x, 2))