Internal
problem
ID
[11510]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
4,
linear
fourth
order
Problem
number
:
1550
Date
solved
:
Sunday, March 30, 2025 at 08:23:56 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=x*diff(diff(diff(diff(y(x),x),x),x),x)-(6*x^2+1)*diff(diff(diff(y(x),x),x),x)+12*x^3*diff(diff(y(x),x),x)-(9*x^2-7)*x^2*diff(y(x),x)+2*(x^2-3)*x^3*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=2*x^3*(-3 + x^2)*y[x] - x^2*(-7 + 9*x^2)*D[y[x],x] + 12*x^3*D[y[x],{x,2}] - (1 + 6*x^2)*Derivative[3][y][x] + x*Derivative[4][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*(2*x**2 - 6)*y(x) + 12*x**3*Derivative(y(x), (x, 2)) - x**2*(9*x**2 - 7)*Derivative(y(x), x) + x*Derivative(y(x), (x, 4)) - (6*x**2 + 1)*Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (2*x**5*y(x) - 6*x**3*y(x) + 12*x**3*Derivative(y(x), (x, 2)) - 6*x**2*Derivative(y(x), (x, 3)) + x*Derivative(y(x), (x, 4)) - Derivative(y(x), (x, 3)))/(x**2*(9*x**2 - 7)) cannot be solved by the factorable group method