Internal
problem
ID
[11503]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
4,
linear
fourth
order
Problem
number
:
1539
Date
solved
:
Sunday, March 30, 2025 at 08:23:47 PM
CAS
classification
:
[[_high_order, _missing_x]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+(lambda+1)*a^2*diff(diff(y(x),x),x)+lambda*a^4*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=a^4*\[Lambda]*y[x] + a^2*(1 + \[Lambda])*D[y[x],{x,2}] + Derivative[4][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(a**4*lambda_*y(x) + a**2*(lambda_ + 1)*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)