Internal
problem
ID
[11458]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1491
Date
solved
:
Sunday, March 30, 2025 at 08:22:39 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(diff(y(x),x),x),x)+3*x*diff(diff(y(x),x),x)+(4*a^2*x^(2*a)+1-4*nu^2*a^2)*diff(y(x),x) = 4*a^3*x^(2*a-1)*y(x); dsolve(ode,y(x), singsol=all);
ode=(1 - 4*a^2*nu^2 + 4*a^2*x^(2*a))*D[y[x],x] + 3*x*D[y[x],{x,2}] + x^2*Derivative[3][y][x] == 4*a^3*x^(-1 + 2*a)*y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") nu = symbols("nu") y = Function("y") ode = Eq(-4*a**3*x**(2*a - 1)*y(x) + x**2*Derivative(y(x), (x, 3)) + 3*x*Derivative(y(x), (x, 2)) + (-4*a**2*nu**2 + 4*a**2*x**(2*a) + 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (4*a**3*x**(2*a - 1)*y(x) - x**2*Derivative(y(x), (x, 3)) - 3*x*Derivative(y(x), (x, 2)))/(-4*a**2*nu**2 + 4*a**2*x**(2*a) + 1) cannot be solved by the factorable group method