60.4.4 problem 1452

Internal problem ID [11427]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 3, linear third order
Problem number : 1452
Date solved : Sunday, March 30, 2025 at 08:22:02 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime }-4 y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 35
ode:=diff(diff(diff(y(x),x),x),x)+3*diff(y(x),x)-4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{x}+c_2 \,{\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {15}\, x}{2}\right )+c_3 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {15}\, x}{2}\right ) \]
Mathematica. Time used: 0.004 (sec). Leaf size: 52
ode=-4*y[x] + 3*D[y[x],x] + Derivative[3][y][x] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-x/2} \left (c_3 e^{3 x/2}+c_2 \cos \left (\frac {\sqrt {15} x}{2}\right )+c_1 \sin \left (\frac {\sqrt {15} x}{2}\right )\right ) \]
Sympy. Time used: 0.229 (sec). Leaf size: 36
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*y(x) + 3*Derivative(y(x), x) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} e^{x} + \left (C_{1} \sin {\left (\frac {\sqrt {15} x}{2} \right )} + C_{2} \cos {\left (\frac {\sqrt {15} x}{2} \right )}\right ) e^{- \frac {x}{2}} \]