Internal
problem
ID
[11310]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1331
Date
solved
:
Sunday, March 30, 2025 at 08:13:57 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = 1/2/x*(-4+x)/(x-2)*diff(y(x),x)-1/2*(x-3)/x^2/(x-2)*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -1/2*((-3 + x)*y[x])/((-2 + x)*x^2) + ((-4 + x)*D[y[x],x])/(2*(-2 + x)*x); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) - (x - 4)*Derivative(y(x), x)/(2*x*(x - 2)) + (x - 3)*y(x)/(2*x**2*(x - 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False