Internal
problem
ID
[11283]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1304
Date
solved
:
Sunday, March 30, 2025 at 08:07:55 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^3*diff(diff(y(x),x),x)+x*diff(y(x),x)-(2*x+3)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(-3 - 2*x)*y[x] + x*D[y[x],x] + x^3*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) - (2*x + 3)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE x**2*Derivative(y(x), (x, 2)) - 2*y(x) + Derivative(y(x), x) - 3*y(x)/x cannot be solved by the factorable group method