60.3.286 problem 1303

Internal problem ID [11282]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1303
Date solved : Sunday, March 30, 2025 at 08:07:51 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (d x +f \right ) y^{\prime }+g y&=0 \end{align*}

Maple. Time used: 0.047 (sec). Leaf size: 501
ode:=(a*x^2+b*x+c)*diff(diff(y(x),x),x)+(d*x+f)*diff(y(x),x)+g*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \operatorname {hypergeom}\left (\left [\frac {-a +d +\sqrt {a^{2}+\left (-2 d -4 g \right ) a +d^{2}}}{2 a}, -\frac {a -d +\sqrt {a^{2}+\left (-2 d -4 g \right ) a +d^{2}}}{2 a}\right ], \left [\frac {d \sqrt {\frac {-4 a c +b^{2}}{a^{2}}}\, a -2 a f +b d}{2 a^{2} \sqrt {\frac {-4 a c +b^{2}}{a^{2}}}}\right ], \frac {\left (-2 a^{2} x -a b \right ) \sqrt {\frac {-4 a c +b^{2}}{a^{2}}}+4 a c -b^{2}}{8 a c -2 b^{2}}\right )+c_2 {\left (2 \sqrt {\frac {-4 a c +b^{2}}{a^{2}}}\, x \,a^{2}+\sqrt {\frac {-4 a c +b^{2}}{a^{2}}}\, b a -4 a c +b^{2}\right )}^{\frac {a \left (a -\frac {d}{2}\right ) \sqrt {\frac {-4 a c +b^{2}}{a^{2}}}+a f -\frac {b d}{2}}{\sqrt {\frac {-4 a c +b^{2}}{a^{2}}}\, a^{2}}} \operatorname {hypergeom}\left (\left [\frac {a \left (a -\sqrt {a^{2}+\left (-2 d -4 g \right ) a +d^{2}}\right ) \sqrt {\frac {-4 a c +b^{2}}{a^{2}}}+2 a f -b d}{2 \sqrt {\frac {-4 a c +b^{2}}{a^{2}}}\, a^{2}}, \frac {a \left (a +\sqrt {a^{2}+\left (-2 d -4 g \right ) a +d^{2}}\right ) \sqrt {\frac {-4 a c +b^{2}}{a^{2}}}+2 a f -b d}{2 \sqrt {\frac {-4 a c +b^{2}}{a^{2}}}\, a^{2}}\right ], \left [\frac {4 a^{2} \sqrt {\frac {-4 a c +b^{2}}{a^{2}}}-d \sqrt {\frac {-4 a c +b^{2}}{a^{2}}}\, a +2 a f -b d}{2 a^{2} \sqrt {\frac {-4 a c +b^{2}}{a^{2}}}}\right ], \frac {\left (-2 a^{2} x -a b \right ) \sqrt {\frac {-4 a c +b^{2}}{a^{2}}}+4 a c -b^{2}}{8 a c -2 b^{2}}\right ) \]
Mathematica. Time used: 4.508 (sec). Leaf size: 498
ode=g*y[x] + (f + d*x)*D[y[x],x] + (c + b*x + a*x^2)*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \operatorname {Hypergeometric2F1}\left (-\frac {a-d+\sqrt {(a-d)^2-4 a g}}{2 a},\frac {-a+d+\sqrt {(a-d)^2-4 a g}}{2 a},\frac {\left (b+\sqrt {b^2-4 a c}\right ) d-2 a f}{2 a \sqrt {b^2-4 a c}},\frac {b+2 a x+\sqrt {b^2-4 a c}}{2 \sqrt {b^2-4 a c}}\right )-c_2 2^{\frac {\frac {b d}{\sqrt {b^2-4 a c}}+d}{2 a}-\frac {f}{\sqrt {b^2-4 a c}}-1} \exp \left (-\frac {i \pi \left (d \left (\sqrt {b^2-4 a c}+b\right )-2 a f\right )}{2 a \sqrt {b^2-4 a c}}\right ) \left (\frac {\sqrt {b^2-4 a c}+2 a x+b}{\sqrt {b^2-4 a c}}\right )^{-\frac {\frac {b d}{\sqrt {b^2-4 a c}}+d}{2 a}+\frac {f}{\sqrt {b^2-4 a c}}+1} \operatorname {Hypergeometric2F1}\left (\frac {\frac {2 f a}{\sqrt {b^2-4 a c}}+a-\frac {b d}{\sqrt {b^2-4 a c}}-\sqrt {(a-d)^2-4 a g}}{2 a},\frac {\frac {2 f a}{\sqrt {b^2-4 a c}}+a-\frac {b d}{\sqrt {b^2-4 a c}}+\sqrt {(a-d)^2-4 a g}}{2 a},-\frac {\frac {b d}{\sqrt {b^2-4 a c}}+d+a \left (-\frac {2 f}{\sqrt {b^2-4 a c}}-4\right )}{2 a},\frac {b+2 a x+\sqrt {b^2-4 a c}}{2 \sqrt {b^2-4 a c}}\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
d = symbols("d") 
f = symbols("f") 
g = symbols("g") 
y = Function("y") 
ode = Eq(g*y(x) + (d*x + f)*Derivative(y(x), x) + (a*x**2 + b*x + c)*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False