Internal
problem
ID
[11228]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1248
Date
solved
:
Sunday, March 30, 2025 at 07:57:40 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(x^2-1)*diff(diff(y(x),x),x)+a*x*diff(y(x),x)+(b*x^2+c*x+d)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(d + c*x + b*x^2)*y[x] + a*x*D[y[x],x] + (-1 + x^2)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") d = symbols("d") y = Function("y") ode = Eq(a*x*Derivative(y(x), x) + (x**2 - 1)*Derivative(y(x), (x, 2)) + (b*x**2 + c*x + d)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False