60.3.226 problem 1242

Internal problem ID [11222]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1242
Date solved : Sunday, March 30, 2025 at 07:57:27 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-\left (3 x +1\right ) y^{\prime }-\left (x^{2}-x \right ) y&=0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 41
ode:=(x^2-1)*diff(diff(y(x),x),x)-(3*x+1)*diff(y(x),x)-(x^2-x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = 2 \,{\mathrm e}^{x} c_2 +c_2 \,{\mathrm e}^{-2-x} \left (x +1\right )^{2} \operatorname {Ei}_{1}\left (-2 x -2\right )+c_1 \,{\mathrm e}^{-x} \left (x +1\right )^{2} \]
Mathematica. Time used: 0.254 (sec). Leaf size: 109
ode=(x - x^2)*y[x] - (1 + 3*x)*D[y[x],x] + (-1 + x^2)*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \exp \left (\int _1^x\left (\frac {3}{2 (K[1]+1)}-1+\frac {1}{1-K[1]}\right )dK[1]-\frac {1}{2} \int _1^x\frac {3 K[2]+1}{1-K[2]^2}dK[2]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[3]}\left (\frac {3}{2 (K[1]+1)}-1+\frac {1}{1-K[1]}\right )dK[1]\right )dK[3]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-3*x - 1)*Derivative(y(x), x) + (x**2 - 1)*Derivative(y(x), (x, 2)) - (x**2 - x)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False