60.3.193 problem 1207

Internal problem ID [11189]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1207
Date solved : Sunday, March 30, 2025 at 07:45:25 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime } x +\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x +\operatorname {c1} \right ) y&=0 \end{align*}

Maple. Time used: 0.155 (sec). Leaf size: 110
ode:=x^2*diff(diff(y(x),x),x)+(a*x+b)*diff(y(x),x)*x+(a1*x^2+b1*x+c1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-\frac {a x}{2}} x^{-\frac {b}{2}} \left (\operatorname {WhittakerW}\left (-\frac {a b -2 \operatorname {b1}}{2 \sqrt {a^{2}-4 \operatorname {a1}}}, \frac {\sqrt {b^{2}-2 b -4 \operatorname {c1} +1}}{2}, \sqrt {a^{2}-4 \operatorname {a1}}\, x \right ) c_2 +\operatorname {WhittakerM}\left (-\frac {a b -2 \operatorname {b1}}{2 \sqrt {a^{2}-4 \operatorname {a1}}}, \frac {\sqrt {b^{2}-2 b -4 \operatorname {c1} +1}}{2}, \sqrt {a^{2}-4 \operatorname {a1}}\, x \right ) c_1 \right ) \]
Mathematica. Time used: 0.797 (sec). Leaf size: 232
ode=(c1 + b1*x + a1*x^2)*y[x] + x*(b + a*x)*D[y[x],x] + x^2*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \left (c_1 \operatorname {HypergeometricU}\left (\frac {a b-2 \text {b1}+\sqrt {a^2-4 \text {a1}} \left (\sqrt {b^2-2 b-4 \text {c1}+1}+1\right )}{2 \sqrt {a^2-4 \text {a1}}},\sqrt {b^2-2 b-4 \text {c1}+1}+1,\sqrt {a^2-4 \text {a1}} x\right )+c_2 L_{\frac {-a b+2 \text {b1}-\sqrt {a^2-4 \text {a1}} \left (\sqrt {b^2-2 b-4 \text {c1}+1}+1\right )}{2 \sqrt {a^2-4 \text {a1}}}}^{\sqrt {b^2-2 b-4 \text {c1}+1}}\left (\sqrt {a^2-4 \text {a1}} x\right )\right ) \exp \left (\int _1^x-\frac {b+a K[1]+\sqrt {a^2-4 \text {a1}} K[1]-\sqrt {b^2-2 b-4 \text {c1}+1}-1}{2 K[1]}dK[1]\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
a1 = symbols("a1") 
b = symbols("b") 
b1 = symbols("b1") 
c1 = symbols("c1") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*(a*x + b)*Derivative(y(x), x) + (a1*x**2 + b1*x + c1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Expected Expr or iterable but got None