Internal
problem
ID
[10846]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
849
Date
solved
:
Sunday, March 30, 2025 at 07:13:40 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`]]
ode:=diff(y(x),x) = -1/2*x+1+(x^2-4*x+4*y(x))^(1/2)+x^2*(x^2-4*x+4*y(x))^(1/2)+x^3*(x^2-4*x+4*y(x))^(1/2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == 1 - x/2 + Sqrt[-4*x + x^2 + 4*y[x]] + x^2*Sqrt[-4*x + x^2 + 4*y[x]] + x^3*Sqrt[-4*x + x^2 + 4*y[x]]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**3*sqrt(x**2 - 4*x + 4*y(x)) - x**2*sqrt(x**2 - 4*x + 4*y(x)) + x/2 - sqrt(x**2 - 4*x + 4*y(x)) + Derivative(y(x), x) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out