60.2.265 problem 842

Internal problem ID [10839]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 842
Date solved : Sunday, March 30, 2025 at 07:11:57 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=\frac {y+x^{2} \ln \left (x \right )^{3}+2 x^{2} \ln \left (x \right )^{2} y+x^{2} \ln \left (x \right ) y^{2}}{x \ln \left (x \right )} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 43
ode:=diff(y(x),x) = (y(x)+x^2*ln(x)^3+2*x^2*ln(x)^2*y(x)+x^2*ln(x)*y(x)^2)/x/ln(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {\ln \left (x \right ) \left (2 x^{2} \ln \left (x \right )-x^{2}+2 c_1 +4\right )}{2 x^{2} \ln \left (x \right )-x^{2}+2 c_1} \]
Mathematica. Time used: 0.318 (sec). Leaf size: 52
ode=D[y[x],x] == (x^2*Log[x]^3 + y[x] + 2*x^2*Log[x]^2*y[x] + x^2*Log[x]*y[x]^2)/(x*Log[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {\log (x) \left (x^2-2 x^2 \log (x)-4 (1+c_1)\right )}{-x^2+2 x^2 \log (x)+4 c_1} \\ y(x)\to -\log (x) \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (x**2*y(x)**2*log(x) + 2*x**2*y(x)*log(x)**2 + x**2*log(x)**3 + y(x))/(x*log(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -x*y(x)**2 - 2*x*y(x)*log(x) - x*log(x)**2 + Derivative(y(x), x) - y(x)/(x*log(x)) cannot be solved by the factorable group method