60.2.250 problem 826

Internal problem ID [10824]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 826
Date solved : Sunday, March 30, 2025 at 07:09:35 PM
CAS classification : [_rational, [_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} y^{\prime }&=\frac {\left (3 x y^{2}+x +3 y^{2}\right ) y}{\left (6 y^{2}+x \right ) x \left (x +1\right )} \end{align*}

Maple. Time used: 0.070 (sec). Leaf size: 59
ode:=diff(y(x),x) = 1/(6*y(x)^2+x)*(3*x*y(x)^2+x+3*y(x)^2)*y(x)/x/(1+x); 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {y^{2} x}{6 y^{2}+x} = \frac {\left ({\mathrm e}^{\operatorname {RootOf}\left (-{\mathrm e}^{\textit {\_Z}} \ln \left (\frac {\left (x +1\right )^{2} \left ({\mathrm e}^{\textit {\_Z}}+9\right )}{x}\right )+{\mathrm e}^{\textit {\_Z}} \ln \left (2\right )+3 c_1 \,{\mathrm e}^{\textit {\_Z}}+\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+9\right )}+9\right ) x}{54} \]
Mathematica. Time used: 0.755 (sec). Leaf size: 70
ode=D[y[x],x] == (y[x]*(x + 3*y[x]^2 + 3*x*y[x]^2))/(x*(1 + x)*(x + 6*y[x]^2)); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt {x} \sqrt {W\left (\frac {6 e^{2 c_1} x}{(x+1)^2}\right )}}{\sqrt {6}} \\ y(x)\to \frac {\sqrt {x} \sqrt {W\left (\frac {6 e^{2 c_1} x}{(x+1)^2}\right )}}{\sqrt {6}} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (3*x*y(x)**2 + x + 3*y(x)**2)*y(x)/(x*(x + 1)*(x + 6*y(x)**2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out