60.2.241 problem 817

Internal problem ID [10815]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 817
Date solved : Sunday, March 30, 2025 at 07:06:11 PM
CAS classification : [`y=_G(x,y')`]

\begin{align*} y^{\prime }&=\frac {-2 \cos \left (y\right )+x^{3} \cos \left (2 y\right ) \ln \left (x \right )+x^{3} \ln \left (x \right )}{2 \sin \left (y\right ) \ln \left (x \right ) x} \end{align*}

Maple. Time used: 0.024 (sec). Leaf size: 27
ode:=diff(y(x),x) = 1/2*(-2*cos(y(x))+x^3*cos(2*y(x))*ln(x)+x^3*ln(x))/sin(y(x))/ln(x)/x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \operatorname {arcsec}\left (\frac {3 x^{3} \ln \left (x \right )-x^{3}+9 c_1}{9 \ln \left (x \right )}\right ) \]
Mathematica. Time used: 1.337 (sec). Leaf size: 77
ode=D[y[x],x] == (Csc[y[x]]*(-Cos[y[x]] + (x^3*Log[x])/2 + (x^3*Cos[2*y[x]]*Log[x])/2))/(x*Log[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sec ^{-1}\left (-\frac {x^3-3 x^3 \log (x)+9 c_1}{9 \log (x)}\right ) \\ y(x)\to \sec ^{-1}\left (-\frac {x^3-3 x^3 \log (x)+9 c_1}{9 \log (x)}\right ) \\ y(x)\to -\frac {\pi }{2} \\ y(x)\to \frac {\pi }{2} \\ \end{align*}
Sympy. Time used: 5.445 (sec). Leaf size: 49
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (x**3*log(x)*cos(2*y(x)) + x**3*log(x) - 2*cos(y(x)))/(2*x*log(x)*sin(y(x))),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \operatorname {acos}{\left (- \frac {9 \log {\left (x \right )}}{C_{1} - 3 x^{3} \log {\left (x \right )} + x^{3}} \right )} + 2 \pi , \ y{\left (x \right )} = \operatorname {acos}{\left (\frac {9 \log {\left (x \right )}}{C_{1} + 3 x^{3} \log {\left (x \right )} - x^{3}} \right )}\right ] \]