60.2.108 problem 684

Internal problem ID [10682]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 684
Date solved : Sunday, March 30, 2025 at 06:20:51 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} y^{\prime }&=\frac {y+\sqrt {y^{2}+x^{2}}\, x^{2}}{x} \end{align*}

Maple. Time used: 0.731 (sec). Leaf size: 30
ode:=diff(y(x),x) = (y(x)+(x^2+y(x)^2)^(1/2)*x^2)/x; 
dsolve(ode,y(x), singsol=all);
 
\[ \ln \left (\sqrt {y^{2}+x^{2}}+y\right )-\frac {x^{2}}{2}-\ln \left (x \right )-c_{1} = 0 \]
Mathematica. Time used: 0.246 (sec). Leaf size: 18
ode=D[y[x],x] == (y[x] + x^2*Sqrt[x^2 + y[x]^2])/x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x \sinh \left (\frac {x^2}{2}+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (x**2*sqrt(x**2 + y(x)**2) + y(x))/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out