Internal
problem
ID
[10679]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
681
Date
solved
:
Sunday, March 30, 2025 at 06:20:27 PM
CAS
classification
:
[[_homogeneous, `class D`], _Riccati]
ode:=diff(y(x),x) = (y(x)+x^3*b*ln(1/x)+x^4*b+b*x^3+x*a*y(x)^2*ln(1/x)+x^2*a*y(x)^2+a*x*y(x)^2)/x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (b*x^3 + b*x^4 + b*x^3*Log[x^(-1)] + y[x] + a*x*y[x]^2 + a*x^2*y[x]^2 + a*x*Log[x^(-1)]*y[x]^2)/x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(Derivative(y(x), x) - (a*x**2*y(x)**2 + a*x*y(x)**2*log(1/x) + a*x*y(x)**2 + b*x**4 + b*x**3*log(1/x) + b*x**3 + y(x))/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -a*x*y(x)**2 - a*y(x)**2*log(1/x) - a*y(x)**2 - b*x**3 - b*x**2*log(1/x) - b*x**2 + Derivative(y(x), x) - y(x)/x cannot be solved by the factorable group method