Internal
problem
ID
[10673]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
675
Date
solved
:
Sunday, March 30, 2025 at 06:19:27 PM
CAS
classification
:
[[_homogeneous, `class D`], _Riccati]
ode:=diff(y(x),x) = (y(x)+x^3*a*exp(x)+a*x^4+a*x^3-x*y(x)^2*exp(x)-x^2*y(x)^2-x*y(x)^2)/x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (a*x^3 + a*E^x*x^3 + a*x^4 + y[x] - x*y[x]^2 - E^x*x*y[x]^2 - x^2*y[x]^2)/x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(Derivative(y(x), x) - (a*x**4 + a*x**3*exp(x) + a*x**3 - x**2*y(x)**2 - x*y(x)**2*exp(x) - x*y(x)**2 + y(x))/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -a*x**3 - a*x**2*exp(x) - a*x**2 + x*y(x)**2 + y(x)**2*exp(x) + y(x)**2 + Derivative(y(x), x) - y(x)/x cannot be solved by the factorable group method