60.2.50 problem 626

Internal problem ID [10624]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 626
Date solved : Sunday, March 30, 2025 at 06:11:50 PM
CAS classification : [_rational, [_Abel, `2nd type`, `class C`]]

\begin{align*} y^{\prime }&=\frac {x}{y+\sqrt {x^{2}+1}} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 118
ode:=diff(y(x),x) = x/(y(x)+(x^2+1)^(1/2)); 
dsolve(ode,y(x), singsol=all);
 
\[ -\frac {4 \ln \left (\frac {\sqrt {x^{2}+1}}{y+\sqrt {x^{2}+1}}\right )}{3}-\frac {2 \ln \left (11\right )}{3}+\frac {2 \ln \left (\frac {-\sqrt {x^{2}+1}\, y+x^{2}-y^{2}+1}{\left (y+\sqrt {x^{2}+1}\right )^{2}}\right )}{3}-\frac {4 \sqrt {5}\, \operatorname {arctanh}\left (\frac {\left (3 \sqrt {x^{2}+1}+y\right ) \sqrt {5}}{5 y+5 \sqrt {x^{2}+1}}\right )}{15}+\frac {2 \ln \left (x^{2}+1\right )}{3}-c_1 = 0 \]
Mathematica. Time used: 0.16 (sec). Leaf size: 88
ode=D[y[x],x] == x/(Sqrt[1 + x^2] + y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\frac {1}{2} \left (\log \left (-\frac {y(x)^2}{x^2+1}-\frac {y(x)}{\sqrt {x^2+1}}+1\right )+\log \left (x^2+1\right )\right )=\frac {\text {arctanh}\left (\frac {3 \sqrt {x^2+1}+y(x)}{\sqrt {5} \left (\sqrt {x^2+1}+y(x)\right )}\right )}{\sqrt {5}}+c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x/(sqrt(x**2 + 1) + y(x)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out