60.2.30 problem 606

Internal problem ID [10604]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 606
Date solved : Sunday, March 30, 2025 at 06:09:51 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)]`]]

\begin{align*} y^{\prime }&=-\left (-{\mathrm e}^{-x^{2}}+x^{2} {\mathrm e}^{-x^{2}}-F \left (y-\frac {x^{2} {\mathrm e}^{-x^{2}}}{2}\right )\right ) x \end{align*}

Maple. Time used: 0.014 (sec). Leaf size: 34
ode:=diff(y(x),x) = -(-exp(-x^2)+x^2*exp(-x^2)-F(y(x)-1/2*x^2*exp(-x^2)))*x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x^{2} {\mathrm e}^{-x^{2}}}{2}+\operatorname {RootOf}\left (x^{2}-2 \int _{}^{\textit {\_Z}}\frac {1}{F \left (\textit {\_a} \right )}d \textit {\_a} +2 c_1 \right ) \]
Mathematica. Time used: 0.395 (sec). Leaf size: 361
ode=D[y[x],x] == x*(E^(-x^2) - x^2/E^x^2 + F[-1/2*x^2/E^x^2 + y[x]]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{y(x)}-\frac {F\left (K[2]-\frac {1}{2} e^{-x^2} x^2\right ) \int _1^x\left (\frac {e^{-K[1]^2} F''\left (K[2]-\frac {1}{2} e^{-K[1]^2} K[1]^2\right ) K[1]^3}{F\left (K[2]-\frac {1}{2} e^{-K[1]^2} K[1]^2\right )^2}-\frac {e^{-K[1]^2} \left (e^{K[1]^2} F\left (K[2]-\frac {1}{2} e^{-K[1]^2} K[1]^2\right )+1\right ) F''\left (K[2]-\frac {1}{2} e^{-K[1]^2} K[1]^2\right ) K[1]}{F\left (K[2]-\frac {1}{2} e^{-K[1]^2} K[1]^2\right )^2}+\frac {F''\left (K[2]-\frac {1}{2} e^{-K[1]^2} K[1]^2\right ) K[1]}{F\left (K[2]-\frac {1}{2} e^{-K[1]^2} K[1]^2\right )}\right )dK[1]+1}{F\left (K[2]-\frac {1}{2} e^{-x^2} x^2\right )}dK[2]+\int _1^x\left (\frac {e^{-K[1]^2} \left (e^{K[1]^2} F\left (y(x)-\frac {1}{2} e^{-K[1]^2} K[1]^2\right )+1\right ) K[1]}{F\left (y(x)-\frac {1}{2} e^{-K[1]^2} K[1]^2\right )}-\frac {e^{-K[1]^2} K[1]^3}{F\left (y(x)-\frac {1}{2} e^{-K[1]^2} K[1]^2\right )}\right )dK[1]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
F = Function("F") 
ode = Eq(x*(x**2*exp(-x**2) - F(-x**2*exp(-x**2)/2 + y(x)) - exp(-x**2)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -x*(-x**2 + F(-x**2*exp(-x**2)/2 + y(x))*exp(x**2) + 1)*exp(-x**2) + Derivative(y(x), x) cannot be solved by the factorable group method