60.1.546 problem 559

Internal problem ID [10560]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 559
Date solved : Sunday, March 30, 2025 at 06:04:41 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} y \sqrt {{y^{\prime }}^{2}+1}-a y y^{\prime }-a x&=0 \end{align*}

Maple. Time used: 0.754 (sec). Leaf size: 378
ode:=y(x)*(1+diff(y(x),x)^2)^(1/2)-a*y(x)*diff(y(x),x)-a*x = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} -{\mathrm e}^{a \int _{}^{\frac {-a^{2} x +\sqrt {y^{2} \left (a^{2}-1\right )+a^{2} x^{2}}}{\left (a^{2}-1\right ) y}}\frac {a \sqrt {\textit {\_a}^{2}+1}-\textit {\_a}}{\sqrt {\textit {\_a}^{2}+1}\, \left (\textit {\_a} a -\sqrt {\textit {\_a}^{2}+1}\right ) \left (-\sqrt {\textit {\_a}^{2}+1}\, \textit {\_a} +a \left (\textit {\_a}^{2}+1\right )\right )}d \textit {\_a}} c_1 +x &= 0 \\ -{\mathrm e}^{a \int _{}^{\frac {-a^{2} x -\sqrt {y^{2} \left (a^{2}-1\right )+a^{2} x^{2}}}{\left (a^{2}-1\right ) y}}\frac {a \sqrt {\textit {\_a}^{2}+1}-\textit {\_a}}{\sqrt {\textit {\_a}^{2}+1}\, \left (\textit {\_a} a -\sqrt {\textit {\_a}^{2}+1}\right ) \left (-\sqrt {\textit {\_a}^{2}+1}\, \textit {\_a} +a \left (\textit {\_a}^{2}+1\right )\right )}d \textit {\_a}} c_1 +x &= 0 \\ y &= \operatorname {RootOf}\left (-\ln \left (x \right )+\int _{}^{\textit {\_Z}}-\frac {\left (\textit {\_a}^{2} a^{2}-\textit {\_a}^{2}+a^{2}-\sqrt {\textit {\_a}^{2} a^{2}-\textit {\_a}^{2}+a^{2}}\right ) \textit {\_a}}{\left (\textit {\_a}^{2}+1\right ) \left (\textit {\_a}^{2} a^{2}-\textit {\_a}^{2}+a^{2}\right )}d \textit {\_a} +c_1 \right ) x \\ y &= \operatorname {RootOf}\left (-\ln \left (x \right )-\int _{}^{\textit {\_Z}}\frac {\left (\textit {\_a}^{2} a^{2}-\textit {\_a}^{2}+a^{2}+\sqrt {\textit {\_a}^{2} a^{2}-\textit {\_a}^{2}+a^{2}}\right ) \textit {\_a}}{\left (\textit {\_a}^{2}+1\right ) \left (\textit {\_a}^{2} a^{2}-\textit {\_a}^{2}+a^{2}\right )}d \textit {\_a} +c_1 \right ) x \\ \end{align*}
Mathematica. Time used: 6.795 (sec). Leaf size: 251
ode=-(a*x) - a*y[x]*D[y[x],x] + y[x]*Sqrt[1 + D[y[x],x]^2]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt {\left (a^2-1\right )^3 \left (-x^2\right )-2 \left (a^2-1\right ) x e^{\left (a^2-1\right ) c_1}+e^{2 \left (a^2-1\right ) c_1}}}{\sqrt {\left (a^2-1\right )^3}} \\ y(x)\to \frac {\sqrt {\left (a^2-1\right )^3 \left (-x^2\right )-2 \left (a^2-1\right ) x e^{\left (a^2-1\right ) c_1}+e^{2 \left (a^2-1\right ) c_1}}}{\sqrt {\left (a^2-1\right )^3}} \\ y(x)\to -\frac {\sqrt {\left (a^2-1\right )^3 \left (-x^2\right )+2 \left (a^2-1\right ) x e^{\left (a^2-1\right ) c_1}+e^{2 \left (a^2-1\right ) c_1}}}{\sqrt {\left (a^2-1\right )^3}} \\ y(x)\to \frac {\sqrt {\left (a^2-1\right )^3 \left (-x^2\right )+2 \left (a^2-1\right ) x e^{\left (a^2-1\right ) c_1}+e^{2 \left (a^2-1\right ) c_1}}}{\sqrt {\left (a^2-1\right )^3}} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a*x - a*y(x)*Derivative(y(x), x) + sqrt(Derivative(y(x), x)**2 + 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out