60.1.527 problem 540

Internal problem ID [10541]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 540
Date solved : Sunday, March 30, 2025 at 05:49:09 PM
CAS classification : [_quadrature]

\begin{align*} 2 y {y^{\prime }}^{3}-y {y^{\prime }}^{2}+2 x y^{\prime }-x&=0 \end{align*}

Maple. Time used: 0.033 (sec). Leaf size: 111
ode:=2*y(x)*diff(y(x),x)^3-y(x)*diff(y(x),x)^2+2*x*diff(y(x),x)-x = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} x \left (1+\frac {c_1}{\left (\frac {-\sqrt {-y x}+y}{y}\right )^{{2}/{3}} \left (\frac {-x +\sqrt {-y x}+y}{y}\right )^{{2}/{3}} y}\right ) &= 0 \\ x \left (1+\frac {c_1}{\left (\frac {\sqrt {-y x}+y}{y}\right )^{{2}/{3}} \left (\frac {-x -\sqrt {-y x}+y}{y}\right )^{{2}/{3}} y}\right ) &= 0 \\ y &= \frac {x}{2}+c_1 \\ \end{align*}
Mathematica. Time used: 3.466 (sec). Leaf size: 61
ode=-x + 2*x*D[y[x],x] - y[x]*D[y[x],x]^2 + 2*y[x]*D[y[x],x]^3==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {x}{2}+c_1 \\ y(x)\to \left (\frac {3 c_1}{2}-i x^{3/2}\right ){}^{2/3} \\ y(x)\to \left (i x^{3/2}+\frac {3 c_1}{2}\right ){}^{2/3} \\ \end{align*}
Sympy. Time used: 74.506 (sec). Leaf size: 381
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*Derivative(y(x), x) - x + 2*y(x)*Derivative(y(x), x)**3 - y(x)*Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} + \frac {x}{2}, \ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} - 2 C_{1} \sqrt {- x^{3}} - x^{3}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} - 2 C_{1} \sqrt {- x^{3}} - x^{3}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} + 2 C_{1} \sqrt {- x^{3}} - x^{3}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} + 2 C_{1} \sqrt {- x^{3}} - x^{3}}}{2}, \ y{\left (x \right )} = \sqrt [3]{C_{1}^{2} - 2 C_{1} \sqrt {- x^{3}} - x^{3}}, \ y{\left (x \right )} = \sqrt [3]{C_{1}^{2} + 2 C_{1} \sqrt {- x^{3}} - x^{3}}, \ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} - 2 C_{1} \sqrt {- x^{3}} - x^{3}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} - 2 C_{1} \sqrt {- x^{3}} - x^{3}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} + 2 C_{1} \sqrt {- x^{3}} - x^{3}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{C_{1}^{2} + 2 C_{1} \sqrt {- x^{3}} - x^{3}}}{2}, \ y{\left (x \right )} = \sqrt [3]{C_{1}^{2} - 2 C_{1} \sqrt {- x^{3}} - x^{3}}, \ y{\left (x \right )} = \sqrt [3]{C_{1}^{2} + 2 C_{1} \sqrt {- x^{3}} - x^{3}}\right ] \]