Internal
problem
ID
[10445]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
442
Date
solved
:
Sunday, March 30, 2025 at 04:43:42 PM
CAS
classification
:
[_linear]
ode:=x^2*diff(y(x),x)^2+(x^2*y(x)-2*x*y(x)+x^3)*diff(y(x),x)+(y(x)^2-x^2*y(x))*(1-x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1 - x)*(-(x^2*y[x]) + y[x]^2) + (x^3 - 2*x*y[x] + x^2*y[x])*D[y[x],x] + x^2*D[y[x],x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x)**2 + (1 - x)*(-x**2*y(x) + y(x)**2) + (x**3 + x**2*y(x) - 2*x*y(x))*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)