Internal
problem
ID
[10351]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
344
Date
solved
:
Sunday, March 30, 2025 at 04:23:00 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=(ln(y(x))+2*x-1)*diff(y(x),x)-2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-2*y[x] + (-1 + 2*x + Log[y[x]])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((2*x + log(y(x)) - 1)*Derivative(y(x), x) - 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)