60.1.304 problem 310

Internal problem ID [10318]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 310
Date solved : Sunday, March 30, 2025 at 04:01:32 PM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, _dAlembert]

\begin{align*} \left (2 y^{3}+5 x^{2} y\right ) y^{\prime }+5 x y^{2}+x^{3}&=0 \end{align*}

Maple. Time used: 0.122 (sec). Leaf size: 125
ode:=(2*y(x)^3+5*x^2*y(x))*diff(y(x),x)+5*x*y(x)^2+x^3 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {\sqrt {-10 c_1 \,x^{2}-2 \sqrt {23 x^{4} c_1^{2}+2}}}{2 \sqrt {c_1}} \\ y &= \frac {\sqrt {-10 c_1 \,x^{2}-2 \sqrt {23 x^{4} c_1^{2}+2}}}{2 \sqrt {c_1}} \\ y &= -\frac {\sqrt {-10 c_1 \,x^{2}+2 \sqrt {23 x^{4} c_1^{2}+2}}}{2 \sqrt {c_1}} \\ y &= \frac {\sqrt {-10 c_1 \,x^{2}+2 \sqrt {23 x^{4} c_1^{2}+2}}}{2 \sqrt {c_1}} \\ \end{align*}
Mathematica. Time used: 23.966 (sec). Leaf size: 295
ode=x^3 + 5*x*y[x]^2 + (5*x^2*y[x] + 2*y[x]^3)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt {-5 x^2-\sqrt {23 x^4+2 e^{4 c_1}}}}{\sqrt {2}} \\ y(x)\to \frac {\sqrt {-5 x^2-\sqrt {23 x^4+2 e^{4 c_1}}}}{\sqrt {2}} \\ y(x)\to -\frac {\sqrt {-5 x^2+\sqrt {23 x^4+2 e^{4 c_1}}}}{\sqrt {2}} \\ y(x)\to \frac {\sqrt {-5 x^2+\sqrt {23 x^4+2 e^{4 c_1}}}}{\sqrt {2}} \\ y(x)\to -\frac {\sqrt {-\sqrt {23} \sqrt {x^4}-5 x^2}}{\sqrt {2}} \\ y(x)\to \frac {\sqrt {-\sqrt {23} \sqrt {x^4}-5 x^2}}{\sqrt {2}} \\ y(x)\to -\frac {\sqrt {\sqrt {23} \sqrt {x^4}-5 x^2}}{\sqrt {2}} \\ y(x)\to \frac {\sqrt {\sqrt {23} \sqrt {x^4}-5 x^2}}{\sqrt {2}} \\ \end{align*}
Sympy. Time used: 4.711 (sec). Leaf size: 116
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3 + 5*x*y(x)**2 + (5*x**2*y(x) + 2*y(x)**3)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {- 5 x^{2} - \sqrt {C_{1} + 23 x^{4}}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {- 5 x^{2} - \sqrt {C_{1} + 23 x^{4}}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {- 5 x^{2} + \sqrt {C_{1} + 23 x^{4}}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {- 5 x^{2} + \sqrt {C_{1} + 23 x^{4}}}}{2}\right ] \]