Internal
problem
ID
[10248]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
239
Date
solved
:
Sunday, March 30, 2025 at 03:34:14 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=(x*y(x)-x^2)*diff(y(x),x)+y(x)^2-3*x*y(x)-2*x^2 = 0; dsolve(ode,y(x), singsol=all);
ode=(x*y[x]-x^2)*D[y[x],x]+y[x]^2-3*x*y[x]-2*x^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x**2 - 3*x*y(x) + (-x**2 + x*y(x))*Derivative(y(x), x) + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)