60.1.220 problem 225

Internal problem ID [10234]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 225
Date solved : Sunday, March 30, 2025 at 03:33:12 PM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (4 y+2 x +3\right ) y^{\prime }-2 y-x -1&=0 \end{align*}

Maple. Time used: 0.020 (sec). Leaf size: 20
ode:=(4*y(x)+2*x+3)*diff(y(x),x)-2*y(x)-x-1 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {x}{2}+\frac {\operatorname {LambertW}\left (c_1 \,{\mathrm e}^{5+8 x}\right )}{8}-\frac {5}{8} \]
Mathematica. Time used: 4.15 (sec). Leaf size: 39
ode=(4*y[x]+2*x+3)*D[y[x],x]-2*y[x]-x-1==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{8} \left (W\left (-e^{8 x-1+c_1}\right )-4 x-5\right ) \\ y(x)\to \frac {1}{8} (-4 x-5) \\ \end{align*}
Sympy. Time used: 1.066 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + (2*x + 4*y(x) + 3)*Derivative(y(x), x) - 2*y(x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - \frac {x}{2} + \frac {W\left (C_{1} e^{8 x + 5}\right )}{8} - \frac {5}{8} \]